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This paper extends the work of Wilson (1964) to include the effect of compres- 
sibility in the recurrence of dual solutions in the flow in the boundary layer on 
a semi-infinite, thermally insulated, flat plate placed at zero incidence to a 
uniform stream of electrically-conducting gas with an aligned magnetic field at  
large distances from the plate. Numerical integration of the boundary-layer 
equations has been performed for several values of the ratio, p, of the square of 
the Alfven speed to the fluid speed in the undisturbed fluid, the conductivity 
parameter 6 = 0.1 and cc and the square of the Mach number M2 = 0, &,I ,  2,2-5,  
4 and 5 .  The effect of compressibility is to increase the value of /3 for which a solu- 
tion can exist such that the skin friction at the plate is greater than zero. Dual 
solutions are seen to occur for non-zero Mach number and all values of 6 but no 
attempt here has been made to explain this phenomenon. An analytic argument 
indicates that no solutions of the equations exist if the skin friction a t  the plate 
is greater than zero and if the vorticity and current decay exponentially, the 
condition for which is M2 < 1, p > 1/(1-M2). 

Nothing specific has been proved if this condition is not satisfied. 

1. Introduction 
The author in a previous paper (Ingham 1965), hereafter referred to as I ,  

studied the flow of a viscous, electrically-conducting gas with variable conduc- 
tivity and viscosity past a thin, semi-infinite, thermally insulated, flat plate in 
the presence of a magnetic field which is aligned with the free-stream velocity at 
large distances from the plate. The plate is a t  zero incidence to the main stream 
direction and a co-ordinate system is chosen in which the plate lies in the plane 
y = 0,  x > 0. It was shown that for a highly conducting, almost inviscid gas with 
the Prandtl number P, unity, the boundary layer on either side of the plate 
depends on the solution of the ordinary differential equations 

d(w2vf”)/@ +ff” = M W T )  (wg’), ( l . la )  

d(w’)ldll = E(+J) (f’s-fg’), (1.1 b )  

w( 1 + 1M2fr(y - 1) (1 - p)) = (1 + @?yp (1 - *w2g12)), (1.1 c )  

subject to the boundary conditions 
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In  these equations the primes denote differentiation with respect to the variable 

7 = g y / . J x ,  (1.3) 

where y = /ouPdY, (1.4) 

and the suffix 00 labels quantities evaluated in the main stream. The quantities 
v, a and p are the kinematic viscosity, electrical conductivity and density of the 
gas, made non-dimensional by using their main stream values and x and y are 
non-dimensional with respect to v,/Um. 

The functions f ,  g, and w are associated with the velocity, magnetic field and 
the density, respectively, by 

$ = UwxY(7)7 A = H,x47(7), P = P,W(T), (1.5) 

where $ and A are the stream function and magnetic stream function, respec- 
tively, defined by 

pq = (PU,PV, 0) = v x ($k), 
H = (az, H,, 0) = V x (Ak), 

where k is a unit vector in the z-direction. 
The parameters occurring in equation (1.1) are 

P = ~ ~ : 1 ( 4 7 ~ p ,  u:), E = ~ ~ T ~ ~ P J ~ ,  M ,  Y, (1.7) 

where p is the square of the ratio of the Alfvh speed to the fluid speed in the 
undisturbed fluid, E is the ratio of the viscous and magnetic diffusivities, M is 
the Mach number, y is the ratio of the specific heats of the gas and is taken to be 
1.4, its value for air, and ,u is the permeability of the gas and is assumed to be 
constant throughout. 

In  I numerical results were given for e = 0.01 and 0.1, P = 0, 0-3 and 0-5, 
y = 1.4 and M 2  = 0,  Q, 1 , 2 , 5 ,  10,25 and 100 taking a l w  and u2v for air to vary as 

P + M2*(Y - 1)  (1  - r f  11 
(1.8) [1+M2Q(y-  l)(l-$f'2)]5*1*, '2 -"'""') 

0 2 ~  = h-0.35 = 

a / w  = h5.14 = 

(see Bush (1960)), where h is the specific enthalpy of the gas. In  writing down 
these expressions the pressure dependence has been ignored since it has little 
influence on the description of the flow. 

When M = 0 the equations (1.1) reduce to the well-known Greenspan-Carrier 
equations for an incompressible electrically-conducting fluid with constant 
properties namely 

and, of course, 

(1.8 a) 
(1.8b) 

( 1 . 8 ~ )  

Several authors have discussed the solution of these equations subject to the 
boundary condition (1.2). In  particular, Greenspan & Carrier (1959) have given 
several approximate analytic and numerical solutions and Glauert (1961) 
obtained series solutions which are reliable for E < 0.001 and 8 > 10 on the 
assumption that 1 -P was not small; it was this work which was generalized in I 
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for compressible flow past a thermally insulated plate. Reuter & Stewartson 
(1961) have shown that when /3 > 1 there are no solutions of the boundary-layer 
equations (1.8) subject to the boundary conditions (1.2) such that the skin 
friction evaluated at the plate is greater than zero (i.e. f”(0) > 0). Also Wilson 
(1964) and Stewartson & Wilson (1964) looked a t  the nature of the solution of 
the Greenspan-Carrier equations near ,I3 = I. They found that for E > 1 a unique 
solution is possible as /3 -+ 1, but for E < 1 there exists a Po such that in the range 
Po < /3 < 1 there are no solutions of the differential equations and for p < Po the 
solutions are not unique. They were unable to find a physical explanation of this 
phenomena. For p > 1, i.e. the Alfven speed is greater than the fluid speed, dis- 
turbances can penetrate upstream of the plate so that the whole formulation of 
the problem in terms of the boundary-layer equations breaks down. In  compres- 
sible flow (i.e. M + 0 )  this argument breaks down since there are now more than 
two characteristic speeds and an upstream wake will occur when the speed at 
which vorticity and current is carried is greater than the fluid speed. Fan (1964) 
showed that only ‘one of the diffusion-type operators changes in character and 
leads to reversed diffusion when (1 + M 2 p  - p) changes its sign. 

The present work was undertaken: (i) to see the effect of compressibility on the 
critical values of p for which there is no solution of equations (1.1); (ii) to investi- 
gate the possibility of dual solutions. 

In regard to (i) Sears (1960) using the Fredrichs pulse diagram found that for 
an inviscid, compressible fluid of finite electrical conductivity, the flow and 
magnetic field both being aligned with the plate, the transition from a down- 
stream inviscid wake to one upstream, and vice versa, takes place a t  flow condi- 
tions for which 1 +H2p--/3 = 0. Resler & McCune (1960) also predicted this 
result. Fan (1964) found that this result is unaffected by viscosity but his analysis 
was greatly simplified by making an Oseen type of approximation for both the 
magnetic and flow fields, together with the magnetogasdynamic boundary-layer 
approximation; although the resulting equations are linear, the velocity, 
magnetic and temperature fields are still coupled. 

2. Non-existence of solution 
In  I it  was shown that for E arbitrary and 7 large, 

where a is some constant, and also 

(2.2) 
f ”  - 6 exp ( - c(7 - a)2),  

w’ N h exp ( - c(7 - a)2),  

g” N d exp ( - c(r  - a)2) ,  

where b, d and h are constants and c is the smaller root of the quadratic equation 

Both roots of equation (2.3) are positive if 

M2 < 1, p < 1/1-M2 (2.4) 
10-2 
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or M 2  2 1 for all p, where y has been taken to be always greater than unity. If 
condition (2.4) is not satisfied then this would imply, for large 7, thatf“, g” and 
w f  increase exponentially with 7, which is impossible. 

The result is in full agreement with the linearized theory, which should be 
expected, since effectively equations (1.1) have been linearized. When M = 0 the 
condition (2.4) reduces to that obtained by Glauert from which he concluded 
that the asymptotic forms of the type (2.2) cannot exist for /3 > 1 since if they 
did, it would imply, for large 7, that f If and g“ increase exponentially with 7 which 
is impossible. Thus application of the ‘Glauert ’ type argument to magnetogas- 
dynamic flow indicates that difficulties may be encountered when M 2  < 1, 
p > 1/(1-M2),butwhenM2 < 1 , p <  1/(1-N2)andM2 2 lforallp,oneisnot 
entitled to say that, since both roots of (2 .3 )  are positive, solutions exist. 

A more rigorous proof that p = 1 is critical was given by Reuter & Stewartson 
and their method can easily be extended to the compressible case but with the 
conductivity infinite. The proof is omitted as it does not add appreciably to the 
Glauert argument and is only a modest extension of the Stewartson-Reuter 
argument. 

3. Duality of solutions 
A generalization of the analytic work done by Stewartson & Wilson has not 

been attempted but some numerical results have been obtained by the method, 
as described in I. Since the flow depends on five parameters, P,, y ,  e, ,8 and M 2  
and is a two-point boundary-value problem reducing to  a one-point boundary 
problem if M = 0, a complete solution of the equations would be too lengthy. 

In the incompressible case, dual solutions occur if 8 < 1 but not if 8 > 1 and 
therefore the numerical results are limited to the two cases of E = 0.1 and 00. 

The nature of the dual solutions is investigated for M2 = 0, +, 1, 2, 28, 4 and 5, 
especially near the critical value of /3 above which no solutions can be obtained 
for a fixed value of M .  The numerical results were checked by three methods: 

(i) The step length at each step in the integration was decreased until the 
predetermined truncation error in any variable calculated was obtained. Varying 
the truncation error from 10-6 to 10-8 brought little change in the final result. 

(ii) Having found the values forf”(0) and g’(0) for a particular e, p and M the 
computed values a t  large 7 were put back on the computer and the integration 
back to y = 0 was performed, and again there was no significant difference 
between the starting values off”(0) and g’(0). 

(iii) The asymptotic solution for large 7 as given by (2.1) and (2.2) was com- 
pared with numerical results and for a wide range of 7 the difference between 
the numerical and asymptotic solutions is negligible. 

4. Discussion of results 
When e = 0.1 the smaller value of the two solutions for each w2(0 )  v(O)f”(O) 

and w(O)g ’ (O)  are difficult to obtain numerically and therefore the results are 
restricted to values of M 2  = 0, 4, 1, 2 and 2.5. For M 2  = 4 and 5 some dual solu- 
tions have been obtained, but since these do not cover a sufficiently large range 
of values of p they are not presented in full. 
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The skin friction at  the plate, r,, is given by 
r, = t (p,  U2,/x*)o2(0) u(O)f”(O), 

and the variation of w 2 ( 0 )  v(O)f”(O) with /3 for M 2  = 0,  4, 1, 2, 2.5, 4 and 5 with 
e = 0.1 and 00 are shown in figures 1 and 2 respectively. Figure 1 shows that dual 

.. 

P 
FIGURE 1. Graphs of wz(0)v(O)f”(O) against ,8 for E = 0.1. 

P 
FIGURE 2 .  Graphs of w z ( 0 )  v(O)f”(O) against /3 for E = 03. 
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solutions occur for all Mach numbers considered and, unlike the case for incom- 
pressible flow, dual solutions occur for p > 1 provided that M 2  is greater than 
some value between 0.5 and 1. Figure 2 shows that for infinite conductivity the 
critical value, Po say, above which no solution of the equations can be obtained, 
increases with Mach number. Two other interesting features are that: (i) dual 
solutions seem to appear for any finite value of the Mach number and B = 0.1 
and 00; (ii) as the Mach number increases, for 8 = 0.1 or 00, Po increases. 

I hP = 4 
1 *2 
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c \- ' -  2 I / 
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FIGURE 3. Graphs of o(O)g'(O) against ,8 for B = 0.1. 
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Po 

FIGURE 4. Graph of Po against M a  for E = 0.1 and 00. 

-, analytic upper bound for E = g, . 
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The tangential component of the magnetic field is given by 
H, = iHmWg' ,  

and its variation with at  the plate for M 2  = 0, +, 1,2 ,2$ ,  4 and 5 with E = 0.1 is 
shown in figure 3. 

Figures 1-3 confirm the analytic result, namely that no solutions of the equa- 
tions exist if M 2  < l and /3 > l/( l - M2). It can be seen from figure 4 that the 
calculated values of Po are all less than I / (  1 - M 2 )  for each value of M < 1, and 
for M 2 1,  Po is always finite and the difference between the calculated value of 
Po and the predicted upper bound is seen to increase with increasing Mach 
number. This is probably due to the limited applicability of the linearized pro- 
cedure adopted, in particular it does not detect the rapidly changingconductivity. 

M 2  = 2.5 B= 0.85 

1.0 

0.75 

ss p 0.5 

025 

0 10 20 30 40 50 
7 

FIGURE 5. Profiles of the velocity componont u for M 2  = 0 and 2.5, p = 0.85 (nppei- and 
lower branches) and M a  = 2.5, p = 1.2 (upper branch) in all cases for E = 0.1. 

0.75 

'0 10 20 30 40 50 

7 
FIGURE 6. Profiles of magnetic field component H ,  for M 2  = 0 and 2.5, /3 = 0.85 (upper 

and lower branches) and M 2  = 2.5, p = 1.2 (upper branch) in all cases for E = 0.1. 
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A region in which no solutions exist was also found in the incompressible case 
when e < 1. Stewartson & Wilson in their paper gave no physical explanation of 
this phenomenon and merely stated that ‘the physical explanation of the non- 
existence, if Po < ,8 < 1, is not clear because there is still no upstream propaga- 
tion of small disturbances possible ’. But in the boundary layer the local value of /3 
[i.e. (Hi/47rp, U;) (Bz/u2)] becomes very large near the plate where u = 0 and 
H, is finite (except when the conductivity is infinite), and therefore it would seem 
that upstream propagation of small disturbances might be possible within the 

p’ = 0.85 M2 = 2.5 (upper branch) 

p’ = 1.2 M2 = 2.5 (upper branch) 

p’ = 0.85 M2 = 2.5 (upper branch) 

= 1.2 M2 = 2.5 (upper branch) 

= 0.85 M 2  = 0 (upper branch) 

p’= 0.85 M 2  = 2.5 (lower branch) 

0 10 20 30 40 50 

r 

and lower branches) and M 2  = 2.5, ,B = 1.2 (upper branch) in  all cases for E = 0.1. 
FIGURE 7. Profiles of the shear stress w 2 ( r )  v(q)f”(v) for M 2  = 0 and 2.5, = 0.85 (upper 

boundary layer itself. A closer examination of this effect might shed light on the 
reason for the non-existence of the solution if e < 1 and Po < P < 1. Obviously 
the reason given can also be applied to the compressible fluid. 

One particularly interesting feature of the results when compressibility is 
included is the fact that the dual solutions appear for all values of the Mach 
number for which computations have been done for both e = 0.1 and GO; this is 
not the case for the incompressible fluid ( M  = 0), where dual solutions appear 
only for e < 1.  This suggests therefore that taking the value of E = 1 as critical is 
rather special, and peculiar only to the case M = 0. 

For values of p where dual solutions exist, one might presume that the solution 
giving the larger value of the skin friction is appropriate since this solution covers 
all values of p < Po in a continuous manner. Here again a closer study of upstream 
influence is necessary. 



Magnetogasdynamic boundary-layer equations 153 

Figures 5-7 show the profiles of the velocity (parallel to the plate the compo- 
nent of velocity is u = $UJ’(v)) ,  the magnetic-field component parallel to the 
plate and the variation of the shear stress across the boundary layer, respectively, 
for e = 0.1, M 2  = 0 and 2.5 and p = 0.85 (upper and lower branch) and p = 1.2 
(upper branch). It is observed that: 

(i) The width of the boundary layer is decreased by increasing the Mach 
number for p = 0-85 (upper and lower branch), illustrating the influence of 
compressibility on the magnetic Reynolds number. 

1.0 - 

0.75 - 

$ 0 5  
- 

3 

11 
FIGURE 8. Profiles of the velocity component u for e = co, M2 = 5, 

/3 = 3.6 (upper and lower branches) and 4.5 (upper branch). 

(ii) The peak of the curve in figure 7 for p = 0.85 on the lower branch is much 
larger for M2 = 2-5 than the corresponding one for M 2  = 0. 

(iii) For any given Mach number, as p increases the width of the boundary 
layer increases when the greater of the dual solutions is selected and decreases 
for the lower solutions. 

Figures 8 and 9 show the velocity profiles and the variation of the shear stress 
across the boundary layer for infinite conductivity. It is observed that the 
comment (iii) applies here. 

It can be seen from figures 7 and 9 that the solution corresponding to the lower 
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value of the skin friction contains a region near the plate in which d(w2vf ")/dq is 
greater than zero. In  this region it is seen from equation (1.1 a) that the magnetic 
terms slightly dominate the convection terms which again is probably because 
the local value of /3 in this region is greater than unity. When 6 = 0.1, figure 7 
shows that w2vf If is very small near the plate and therefore the boundary layer 
can be considered t o  consist of three regions-a magnetic, viscous and inviscid 
boundary layer. 

7 
FIGURE 9. Profiles of the shear stress W ~ ( V ) V ( ' + ' ) ~ " ( ~ )  for E = 03, M 2  = 5, /3 = 3-6 (upper 

and lower branches) and 4.5 (upper branch). 
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